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Conformal Transformations Combined with
Numerical Techniques, with Applications
to Coupled-Bar Problems

RALPH LEVY, FELLOW, IEER

Abstract—This paper describes a new approach to the solution of
two-dimensional boundary value problems which eliminates the disadvan-
tages and combines the advantages of both conformal transformations and
numerical methods. The conformal transformations are used to remove
potential gradient singularities, and numerical (e.g., finite difference)
methods may then be applied to the resulting almost-regular field prob-
lems. Boundary value problems previously regarded as very difficult be-
come tractable, and considerable savings in computer time and storage
requirements are achieved. The method is applied to the calculation of the
even and odd mode capacitances of cylindrical rods between plane parallel
ground planes. Excellent agreement with results obtained previously is
demonstrated.

I. INTRODUCTION

WO-DIMENSIONAL boundary value problems oc-
cur frequently in many branches of microwave en-
gineering, and similar problems with identical mathemati-
cal formulations are common in practically every branch
of physics and engineering. This paper is restricted to
solutions of the Laplace equation
V3¢=0. (1)
Numerical methods of solution have become popular
because of the widespread availability of computers. Com-
prehensive reviews of finite difference, finite element, and
other methods of discretization have been given in the
various special issues of this TRANSACTIONS on computer-
oriented microwave practices [1], [2]. The review papers
give an account of the advantages and disadvantages of
the various approaches, although it is still difficult or even
impossible to give estimates of accuracy, or to know a
priori how fine a discretization to use to specify a given
accuracy [3]. It is probably fair to state that it is difficult
also to decide on the best choice of method for a given
problem. One of the reasons for the difficulties encoun-
tered is that the finite difference formula is not applicable
rigorously to re-entrant conductor corners, since the
potential gradient is singular and Taylor’s theorem is
invalid. Similar problems occur with other numerical
methods. Some techniques require large computer storage,
and/or are very slow, usually because of convergence
problems.
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An alternative approach which is more desirable is to
use the conformal transformation technique. This is
purely algebraic and does not involve any large scale
numerical operations. Hence the method is very fast, in
fact practically instantaneous using computers. Although
more and more problems are proving amenable to the
conformal transformation approach, e.g., [4], [5], the usual
assumption is that it may be applied only to a very
restrictive range of problems. These arise when the
boundaries can be transformed into simple straight lines
or circles, leading eventually to a regular field pattern
having an exact known solution. It is the object of this
paper to point out that conformal transformations have a
far greater range of applicability than previously implied,
and that conformal transformations may be combined
with numerical methods to eliminate the difficulties of a
purely numerical approach.

II. THE COMBINED CONFORMAL
TRANSFORMATION / NUMERICAL METHOD

The basic approach is to eliminate all singularities in
the potential by a conformal transformation in order to
obtain a final set of boundaries which are as near to
perfect regularity as possible, and then to apply numerical
techniques to the final boundaries. Since the field is al-
most regular a rather coarse mesh may be used if a finite
difference method is to be employed in the final step. It is
necessary to keep careful track of all nonregular
boundaries, and the method then remains exact, at least
up to the step where a numerical method must be finally
adopted. There is no need to search for a transformation
giving exactly regular boundaries, so that most practical
problems are amenable to treatment in this way.

One of the first published applications of the technique
appears to be by Chang [6], but this short paper does not
describe the wide generality of the method, and its full
implications may not be clearly apparant. It does not
point out that fairly precise numerical techniques may be
combined with the conformal transformation to take
advantage of the best features of each approach, which
were formerly applied separately.

Another application of the technique is to the solution
of open structures where the boundaries extend to infinity,
as described by Decréton et al. [7], [8]. Here we may
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regard the point at infinity as a singularity, and resolve
the difficulty by a conformal transformation which results
in an equivalent closed-boundary problem.

ExamrLE: CoUPLED BARS OF CIRCULAR CROSS
SECTION

1.

The technique is best illustrated by means of an exam-
ple, and the one chosen here is the coupled cylindrical bar
configuration shown in Fig. 1(a). This simplifies to the
solution of the even and odd mode boundary value prob-
lems shown in Fig. 1(b). A related (but not identical)
coupled bar problem was solved by Cristal [9] using an
integral representation of the field potential, followed by
numerical discretization to solve the integrals. The even
and odd mode configurations of [9] have electric or mag-
netic walls symmetrically located on either side of the bar,
rather than the asymmetric configurations of Fig, 1(b). It
will be shown here that solutions of Fig. 1 lead to solu-
tions for the case of the multiple coupled-bar array also,
and consequently are as useful as those given in [9].

No exact conformal transformation is known for the
boundaries shown in Fig. 1(b), but the outer boundary
walls ABCDE may be transformed to a perfect circle and
the inner circular boundary to a roughly circularly shaped
conductor by means of the transformation:

_ tanh(z—a)
v tanh(z+a) )

A similar type of transformation was used by Wheeler
[10] to solve the simpler problem of a single bar between
parallel ground planes, and (2) was derived logically from
this. In order to indicate practical realistic results, the
conformal transformations will be drawn to scale for the
case D/b=05, s/b=025, and the w-plane is given for
this case in Fig. 2. The equation of the outer circle
corresponds to z=x=jr /4 for portions 4B and ED of
Fig. 1(b) and to z=jy for BCD, and these regions all lie
on |w|=1 in the w-plane. Points B and D are given by
z=*jz/4 and are located as indicated in Fig. 2. The
equation of the inner conducting boundary is given by
substituting the polar equation for the circle in Fig. 1(b),
ie.,

()

z=a+rcosp+jrsing

in (2), giving the following locus in polar coordinates:

| = { tanh?u + tan®v tanh®u’ +tan®o } @)
1+tanh?utan®c’ 1+ tanh®u’tanv
argw1=tan“{ tano 1 tanh’s }
1+tan’p  tanhu
—tan"l{ tano  1—tanh®w } (5
1+tan?y  tanhu’

where

u=rcos¢

v=rsin¢

v'=(2a+r)cosd. (6)
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Fig. 1. (a) Cross section through coupled cylindrical bars. (b) Even-
and odd-mode problems.

w— plane

Fig. 2. First transformation, D/b=0.5, s/b=0.25.

A second conformal transformation

()
is now applied to the upper-half w-plane giving the almost
regular boundaries (at least for the odd mode) of Fig. 3.
For convenience the 7-plane has been rotated through 90°.
The equation of the smooth curve GF is

t=—Ilnw

(®)

with |w,| and arg w, being given by (4)—(6). Since (by
symmetry) tangents to the curve GF at G and F form a
right angle t0 GC and FA, respectively, and the GF
boundary varies smoothly and gradually, the field is
highly regular, and the odd-mode capacitance can be
written down approximately but very accurately in terms
of the line integral of the flux along the boundary AC. Let
a potential of 1 V be applied to GF with the base conduc-
tor AC at zero potential. Hence at any point on AC
corresponding to a vertical ordinate of GF equal to A, the
gradient of the potential on AC directed normally to this
boundary is simply

ty=argw, +jinjw,|

Vo=1/h. )
Hence the capacitance between GF and AC, equal to half
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Fig. 3. Second transformation, = —Inw.

of the required odd-mode capacitance C,,, is given by

Ce"" =2f0"V¢-dg=2f0"%

where dg is a line increment parallel to the boundary AC,
¢ is the free space permittivity, so that C,, /¢ is given in its
conventional normalized form. In the case of D/b=0.5
and s/b=0.25 shown drawn to scale in the figures, equa-
tion (10) results in C,,/e=8.77. A precise finite difference
calculation with the usual relaxation procedure using a
stationary integral expression for the capacitance yields a
value of 8.801x.002, i.e., the error in using (10) is less
than 0.4 percent.

At this stage several points may be noted. Firstly the
precise value quoted above was obtained using a quite
coarse grid with only about 100 meshes (the accuracy was
confirmed both by varying the mesh size and by forming
both upper and lower bounds). Secondly the simple ex-
pression (10) results always in a lower bound to the exact
solution, since in practice the electric charge will tend to
concentrate near points G,C in Fig. 3, giving a higher
capacitance. Thirdly, the approximate value may be
sufficiently exact in practice, a point to be discussed
further below. Occasionally for some problems an ap-
proximate closed form solution may be obtained.

Of course not all problems will be amenable to final
boundaries shaped as advantageously as shown in Fig. 3,
but the general technique should enable the conformal
transformation approach to be applied more freely than
hitherto. Some extra mathematical effort is required both
to find and then apply the appropriate transformations,
this in comparison to plunging directly into a numerical
solution.

Returning to the coupled-bar problem, the even mode
capacitance, corresponding to the magnetic-wall BC of
Fig. 3, has yet to be found. Rather than carrying out a
finite difference calculation for the even mode, it is sim-
pler to make yet another conformal transformation to the
¢t plane of Fig. 4, where

s cosh_l( cosh(vrt/hl)—sinhz(vra/Zh,)) (1)
m cosh®(7 /2h,)

where A, is an arbitrary point on GF, and is chosen here
as shown in Fig. 3. Equation (11) is derived by mapping
the positive-half straight lines A=0 and h=h, together
with the line connecting (0,4;) and (0,0), onto the upper
half plane using the appropriate Schwartz—Christoffel
transformation, i.e., the right angles at (0,0) and (0, 4,) are
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Fig. 5. Even- and odd-mode boundaries superimposed, to scale.

“unfolded”. This figure is then refolded into the original
shape by applying the reverse transformation, but with
one of the right angles now corresponding to point B,
becoming B’ in Fig. 4. Now the ¢-plane problem is
identical to the 7-plane odd-mode problem, and is solved
in the same way as described above. The result for the
even mode capacitance for our D/b=0.5,5/b=0.25 case
is C,,/e=5.79 by the simple flux integral method of (10),
or 5.812+0.002 by the finite difference method. The mu-
tual capacitance C,, of Fig. 1(a) is given by

G _ Coo— G _ 1.49 (approximate method)
€ 2e 14945+ 0.002 (precise method) -

(12)

It is instructive to superimpose the odd and even mode
boundaries of Figs. 3 and 4 on the same diagram with the
FA, F'A’ magnetic walls coinciding as shown in Fig. 5.
This illustrates the obvious fact that the even and odd
mode fields tend to coincide in regions far removed from
the coupling region. The difference capacitance (mutual
coupling) is clearly defined, and the problem retains its
physical significance throughout.

Although (by symmetry) A’F’ is normal to both F'G’
and A’B’, F’ is not exactly vertically above A4’, ie., the
magnetic boundary A’F’ possesses slight curvature. In
general the distance A’B’ (which maybe defined as the
even mode base) is less than the horizontal F’ coordinate.
For the example illustrated the difference is 2X 1073,
which is quite negligible. The effect becomes more pro-
nounced as the bar diameter is reduced, as expected from
physical considerations, but need not be taken into
account until D/b<0.25. For example if D/b=02, s/b
=0.1, the even mode base is 1.3398, but the F’ coordinate
is 1.3549, a l-percent difference. The effect is less pro-
nounced for looser coupling, i.c., if D/b=0.2, s/b=1.0,
the even mode base is 2.9881 and the F’ coordinate is
2.9909, a 0.1-percent difference.
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The greatest error in using the approximate integral (10)
rather than a precise numerical procedure occurs for very
tightly coupled bars, e.g., when s /b=0.1 corresponding to
mutual capacitance values in the 3—4 range, but the errors
are usually less than 2 percent. Accuracy of this order is
sufficiently good for filter designs (where the majority of
applications occur), and avoiding more precise methods
results in smaller and faster computer programs.

The application of these results to the solution of the
problem of multiple-coupled bars is given in Appendix IL

IV. FURTHER DISCUSSION OF ACCURACY

The usual way of testing the accuracy of a new
boundary-value technique is to apply it to problems
having exact solutions obtained by other methods. This is
not possible here because all such problems automatically
give a precisely correct result, since an exact conformal
transformation will exist. Hence it is necessary to test it
against previously published results for “real” problems.
The coupled-rod problem may be checked roughly against
Cristal’s results [9], (see Appendix II), but more precisely
against those of Chisholm [11] for the odd-mode case, and
Wheeler [10] for the case of a single uncoupled bar.

The latter problem may be derived from Fig. 1 by
allowing a—o0, and this limiting case is easily incorpo-
rated into the general coupled-bar program. Changing the
origin of Fig. 1(b) to the bar center by replacing z by z+a
and allowing a— o0, (2) reduces to

w=tanhz. (13)

However, as stated above, it is unnecessary to program
this limiting case separately. Wheeler [10] treats two cases
very precisely, namely those for impedances of 50 & and
19.318 Q, corresponding to D/b=0.548959 and D /b=
0.866025. Wheeler takes the value of free space impedance
as 1207, and later corrects for the actual velocity of light
and dielectric constant of air, but these considerations are
immaterial here. The normalized capacitances for the
above cases become 7.53982 +0.00045 and 19.5150x=0.04,
with the tolerances being those quoted by Wheeler.! The
low impedance case is a very severe test of any theory,
and the estimated accuracy is therefore worse, but still
within 0.2 percent. The very good quoted accuracies are
due to the use of a more sophisticated conformal transfor-
mation than that given by (13), one which gives an even
more regular field, from which a power series expansion
for the characteristic impedance was determined [10]. The
simpler method used here would be expected to give
slightly less accurate results.

The conformal transformation (13) gives an almost-
regular problem similar to that of Fig. 3. The 50-§ prob-
lem gives minimum and maximum ordinates of 0.776495
and 0.900705. Actually only one-quarter of the capaci-
tance need be calculated in the isolated bar case, 1.e., the
base is 0.57 rather than #. The mesh pattern is defined as

(no. of base grids) X (no. of grids in minimum ordinate).

The accuracies in this early paper [10] may be overstated.
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With a mesh of 10x5, C/£=7.5381, and with one of
20%10,C /e=7.5367. These values are within 0.04 percent
of Wheeler’s figure of 7.5398. The simple line integral of
(10) gives C/e="7.49, low by 0.66 percent.

In the finite difference method the capacitance is
calculated using the stationary integral technique de-
scribed in many previous papers [1], 1.e.,

S [(voy-aa (14)

where the double integral is taken over the entire area 4.
This is not only more accurate than the line integral (10)
but also converges must faster in the relaxation process.
Thus the 10X 5 mesh above converged to 5 decimal place
accuracy in 16 iterations. The line integral converges to
almost the same result in about 60 iterations (without
using an acceleration factor).

In the low impedance case above with D/b=0.86605,
the minimum ordinate is 0.212018 and the maximum is
0.524869. The simple line integral (10) gives C/e=19.24,
the finite difference method with a mesh of 16 X2 gives
19.444, 20X 3 gives 19.471, 25X 8 gives 19.487, and 30X 10
gives 19.491. The finite difference value converges to
approximately 19.493, which is 0.1 percent lower than
Wheeler’s figure of 19.515+.04, but within his quoted
margin of error.

The mesh sizes used to obtain these results are very
coarse by previous standards, where meshes of the order
100X 100 have been found necessary to give reasonable
accuracy. The number of nodes is reduced by two orders
of magnitude in the above examples.

Turning now to the coupled bar case of Fig. 1, the odd
mode capacitance problem was solved by Chisholm using
a variational technique [11]. The method was extended to
the even mode case by McDermott {12], and the results
are given in Appendix I. A comparison between a number
of results obtained from these formulas and the method
described in this paper is given in Table 1. The first ten
results are for cases where odd mode impedance is 50 ©,
and the even mode impedance varies. The next eight are
for D/b=0.4 with varying s/b. The maximum difference
between the results occurs for D/b=0.4, s/b=0.08, i.e., a
case where the coupling is extremely tight. For most cases
the agreement is within 0.2 percent.

The results in the right hand columns were obtained
using square meshes with dimensions of the order of
0.2x0.2. Rather than using the finite difference method
with relaxation, a resistive analogue method with exact
matrix inversion (i.e., no relaxation) was used. This is
slightly less accurate than the normal finite difference
method, but the discrepancy is usually in the third deci-
mal place. This technique is beyond the scope of this
paper, and will be described in a future publication [16].

V. APPLICATION TO OTHER PROBLEMS

Over the course of several years the method has been
applied to other problems involving coupled bars, includ-
ing for example coupling via thick symmetric or asymmet-
ric irises. Three of these problems are illustrated in Fig. 6.
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Fig. 6. Illustrating other problems solvable by the combined conformal

transformation /numerical method.

TABLEI

COMPARISON BETWEEN NORMALIZED CAPACITANCES C/¢
OBTAINED FROM THE CHISHOLM/MCDERMOTT METHOD AND THIS

PAPER
/b s/b CHISHOLM /Mc DERMOTT THIS WORK
Even Odd Even 0dd

.354 .176 3.9142 7.5347 3.9153 7.5528
.400 .226 4.5093 7.5347 4.5080 7.5404
.436 .280 5.0281 7.5347 5.032 7.5501
.462 .338 5.4731 7.5347 5.4718 7.537
.482 .398 5.8497 7.5347 5.8446 7.5339
.498 .462 6.1648 7.5347 6.1721 7.5436
.510 .528 6.4257 7.5347 6.4380 7.5514
.518 .596 6.6404 7.5347 6.6424 7.5371
.534 .806 7.0727 7.5347 7.0710 7.5359
.544 1.168 7.3855 7.5347 7.3806 7.5285
.400 .080 4.1646 11.0783 4.1553 11.2882
.400 .120 4,2631 9.4595 4.2626 9.5317
.400 160 4.3578 8.4935 4.3516 8.5419
.400 .200 4.4483 7.8478 4.4444 7.8652
.400 .240 4.5340 7.3863 4.5358 7.3982
.400 .400 4,8273 6.3903 4.8263 6.3914
.400 .600 5.0826 5.8862 5.0819 5.8848
.400 .760 5.2134 5.6949 5.2130 5.6946

3713
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In each case the thick iris retains most of its main geomet-
ric features through the conformal transformations, and
finally one of the thick-iris formulas to be found in the
literature may be applied, or further conformal transfor-
mations used to eliminate the right angles of the iris. The
configuration shown in Fig. 6(c) is frequently used to
realize cross-coupling in linear phase filters.

It will be noted that treatment of these problems involv-
ing thick irises would be very difficult using a purely
numerical method, since a very fine mesh would be re-
quired in the region of the irises. The thin symmetrical iris
case has been solved by Cristal [13] using the finite
difference method. If exact solutions to such problems
exist, they require at least third ordered elliptic functions,
since there are usually several right-angle discontinuities.
In the method of this paper the problem is taken in stages,
with some right angles unfolded in an initial transforma-
tion and the remainder in a final transformation. The final
boundaries are irregular but smooth, and the functions are
elementary.

Configurations with mixed dielectrics are easily handled
by keeping track of the locus of the dielectric boundary

(e-g. [7), (8.
VL

Boundary value problems may be simplified and made
well-conditioned using conformal transformations to give
almost regular field patterns. The numerical work is sim-
plified, 1.e., the number of nodes may be 100 times less
than that required for a conventional numerical solution,
while the accuracy is extremely good. Some problems
which are beyond the limits of either purely numerical
techniques or pure conformal transformations become
tractable using the combined technique. The method is
much faster than the numerical technique alone, and may
be used in an iteration procedure which determines di-
mensions from given capacitances, i.e., it is useful in
synthesis as well as analysis.

The method may be used to treat complicated
boundaries having several right angles without recourse to
higher order functions, and to mixed dielectric problems.

CONCLUSIONS

APPENDIX |
CouPLED-BAR EQUATIONS OF CHISHOLM [11] AND
MCDERMOTT [12]

The results given here are expressed in terms of
Chisholm’s nomenclature, which is shown in Fig. 7. The
results are given in a power series in b/a as far as (b/a)".
The even or odd mode normalized capacitance C/e is
given by

7 =[X00+20,X %1 +20,X 024 200, X 12
+adX b+ adX 2] (15)

where
__|xvox12 xUL1yL2
6= X230 x2.2 / x21 x22 (16)
_ Xl,!xl,O X1’1X1’2
%= x21 x20 / x21 y22| amn
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Fig. 7. Chisholm’s nomenclature for coupled bars.

The X/* differ for the two modes, are given as follows,
with the upper sign giving the odd-mode capacitance and
the lower sign the even-mode capacitance:

1 2a
00__1 |1,42
X 2W[1n 22 + Intanh ™ ] (18)
X"°=X°’1=-T—l—[cosech-%‘—’-r-c—]-(é) (19)
4 a a
1 =#71 27c 2mc ) [ b\?
I P S I S R N
X . 8[6ic0th - cose ch ] (a) (20)
02_y20_7[1 27 cech 2T¢ (2)2
D¢ X 8[6+coth . ech ] p 21
a2 7c
xl2=x2i=57_ [tanh———sech2
64 a a
3
+cothw—ccosech2£]'(-é) (22)
a a a
1 7 [ 14 e
22 % 7 1% 222
X T6n 256[ 5 t(cosech p )
. (2 coth® 7€ + cosech? < )
a a
4
+sech? = (2t nhz—— chz%c]'(%) - )

Upper sign for odd mode, lower sign for even mode.

APPENDIX 1
MULTIPLE-COUPLED BAR ARRAYS

The general case of multiple-coupled bars may be
treated by a similar put possibly rather more convenient
method than that of Cristal [9], in the sense that graphical
interpolation will be avoided. The method to be described
here parallels that for rectangular coupled bars [4], to the
extent that the equivalents of parallel-plate and fringing
capacitances will be defined for circular bars. Fig. 8(a)
shows an isolated uncoupled bar having equivalent paral-
lel plate capacitance C, and fringing capacitances Cp so
that the total capac1tance in this case is

C,+C=C, (29)

when two such bars are coupled the odd- and even-mode
circuits of Fig. 8(b) and (c), respectively, result, where

C,+C+2C,=C, (25)
C+C=C, (26)
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Fig. 8. Definition of “equivalent-parallel plate” and “fringing” capaci-
tances for cylindrical bars.

It is not necessary to define distinct even and odd mode
fringing capacitances in the circular bar case, these being
incorporated into the single mutual capacitance C,,. The
three equations (24)—-(26) may be solved to give

Cn=3(Cs—C,) (27)
G=C~C, (28)
C,=2C,—C, (29)

Hence the definition of the equivalent parallel plate and
fringing capacitances requires a solution for the isolated
bar capacitance C;, as described in the main text.

Comparison with Cristal’s results [9] may be obtained
by forming the symmetrical odd and even mode circuits
of Fig. 9, which indicates that C, and C,, are identical to
the quantities defined and plotted in [9]. In our D/b=0.5,
5/b=0.25 example, C;=6.75, C,,=8.77, C,,=5.79, giving
C,=4.83, C, =149, C,=0.96.

In the case of an array of unequal bars where the self
and mutual capacitances are given, the dimensions are
found as follows. Assuming that the end bar is decoupled
from an end wall, its self capacitance is G+ G=C,,.
Choosing any value of D/b, there is one and only one
value of s/b giving the required mutual capacitance, and
this is found by iteration. The chosen D /b is correct only
if it gives the correct self-capacitance, and an overall
iteration must be carried out to find this correct value of
D/b. Hence there is one iteration loop nested inside
another, but forming appropriate slopes the Newton-—
Raphson technique will converge very rapidly.

In the case of an inner bar, the left and right hand
values are dealt with separately as described in [9]. The
known self capacitance here is simply C,, and again the
unique D /b and s/b values are found. Then the mean of
the left and right D /b values is chosen as the actual D/b
for that bar. The s/b values are formed similarly as
arithmetic means.

The iteration process is sufficiently fast for the method
to be used in a routine program for calculation of the
dimensions of a large array, i.e.,no prestored results are
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Fig. 9. (a) Symmetrical odd-mode configuration. (b) Symmetrical even-
mode configuration.

used. By carrying out simple capacitance matrix transfor-
mations [15] equivalent arrays with equal bar diameters
are derived using no more than three overall iterations.

The results obtained from this procedure are almost
identical to those given in [9] for values of D/b>0.2, a
condition which should hold in almost all practical cases.
Smaller values of D/b imply the possibility of coupling
between nonadjacent bars, and structures of such high
impedance would normally be avoided.
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