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Conformal Transformations Combined with
Numerical Techniques, with Applications

to Coupled-Bar Problems

RALPH LEVY, FELLOW, IEEE

Absfmzct-Thfs paper deserfkv a new approach to the solution of

two-dimensional boundary vafue problems which efindnates tfm diaadvan-

tagea and eombfnea the advantage of botb eonforrmd transformation and

numericaf methods. TRe conformal transformations are used to remove

potential gradient afngularitiq and nmnericaf (e.g., Mte dffferenm)

methods may then be appfied to the reatdting afmost-regular field prcb

Iems. Boundary vafue problems previously regarded as ~ery diffimft be-

eome tractabl~ and mnsiderable savfngs in mmputer time and storage

requfrementa are aetdeved. The metlmd is appfied to the adeuhtion of the

even and odd mode eapaeitmwes of cyffntfrfcat rods between plane parallel

ground pbmea. Excellent agreement with results obtained previomdy fa

demonstnked.

I. INTRODUCTION

T WO-DIMENSIONAL boundary value problems oc-

cur frequently in many branches of microwave en-

gineering, and similar problems with identic~ mathemati-

cal formulations are common in practically every branch

of physics and engineering. This paper is restricted to

solutions of the Laplace equation

v*@=o. (1)

Numerical methods of solution have become popular

because of the widespread availability of computers. Com-

prehensive reviews of finite difference, finite element, and

other methods of discretization have been given in the

various special issues of this TRANSACTIONS on computer-

oriented microwave practices [1], [2]. The review papers

give an account of the advantages and disadvantages of

the various approaches, although it is still difficult or even

impossible to give estimates of accuracy, or to know a
priori how fine a discretization to use to specify a given

accuracy [3]. It is probably fair to state that it is difficult

also to decide on the best choice of method for a given

problem. One of the reasons for the difficulties encoun-

tered is that the finite difference formula is not applicable

rigorously to re-entrant conductor corners, since the

potential gradient is singular and Taylor’s theorem is

invalid. Similar problems occur with other numerical

methods. Some techniques require large computer storage,

and/or are very slow, usually because of convergence
problems.
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An alternative approach which is more desirable is to

use the conforrnal transformation technique. This is

purely algebraic and does not involve any large scale

numerical operations. Hence the method is very fast, in

fact practically instantaneous using computers. Although

more and more problems are proving amenable to the

conformal transformation approach, e.g., [4], [5], the usual

assumption is that it may be applied only to a very

restrictive range of problems. These arise when the

boundaries can be transformed into simple straight lines

or circles, leading eventually to a regular field pattern

having an exact known solution. It is the object of this

paper to point out that conformal transformations have a

far greater range of applicability than previously implied,

and that conformal transformations may be combined

with numerical methods to eliminate the difficulties of a

purely numerical approach.

II. TIW COMBINED CONFORMAL

TRANSFORMATION/NUMERICAL METHOD

The Mtsic approach is to eliminate all singularities in

the potential by a conformal transformation in order to

obtain a final set of boundaries which are as near to

perfect regularity as possible, and then to apply numerical

techniques to the final boundaries. Since the field is al-

most regular a rather coarse mesh may be used if a finite

difference method is to be employed in the final step. It is

necessary to keep careful track of all nonregular

boundaries, and the method then remains exact, at least

up to the step where a numerical method must be finally

adopted. There is no need to search for a transformation

giving exactly regular boundaries, so that most practical

problems are amenable to treatment in this way.

One of the first published applications of the technique

appears to be by Chang [6], but this short paper does not

describe the wide generality of the method, and its full

implications may not be clearly apparant. It does not

point out that fairly precise numerical techniques may be

combined with the conforrnal transformation to take

advantage of the best features of each approach, which
were formerly applied separately.

Another application of the technique is to the solution

of open structures where the boundaries extend to infinity,

as described by Decr6ton et al. [7], [8]. Here we may
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regard the point at infinity as a singularity, and resolve

the difficulty by a conformal transformation which results

in an equivalent closed-boundary problem.

III. EXAMPLE: COUPLED BARS OF CIRCULAR CROSS

SECTION

The technique is best illustrated by means of an exam-

ple, and the one chosen here is the coupled cylindrical bar

configuration shown in Fig. 1(a). This simplifies to the

solution of the even and odd mode boundary value prob-

lems shown in Fig. l(b). A related (but not identical)

coupled bar problem was solved by Cristal [9] using an

integral representation of the field potential, followed by

numerical discretization to solve the integrals. The even

and odd mode configurations of [9] have electric or mag-

netic walk symmetrically located on either side of the bar,

rather than the asymmetric configurations of Fig, l(b). It

will be shown here that solutions of Fig. I lead to solu-

tions for the case of the multiple coupled-bar array also,

and consequently are as useful as those given in [9].

No exact conformal transformation is known for the

boundaries shown in Fig. l(b), but the outer boundary

walls ABCDE may be transformed to a perfect circle and

the inner circular boundary to a roughly circularly shaped

conductor by means of the transformation:

tanh(z – a)

‘“= tanh(z + a) “
(2)

A similar type of transformation was used by Wheeler

[10] to solve the simpler problem of a single bar between

parallel ground planes, and (2) was derived logically from

this. In order to indicate practical realistic results, the

conformal transformations will be drawn to scale for the

case D/b =0.5, s/b =0.25, and the w-plane is given for

this case in Fig. 2. The equation of the outer circle

corresponds to z = x !cjr/4 for portions AB and ED of

Fig. l(b) and to z =J for BCD, and these regions all lie

on Iw I = 1 in the w-plane. Points B and D are given by

z = &jv/4 and are located as indicated in Fig. 2. The

equation of the inner conducting boundary is given by

substituting the polar’ equation for the circle in Fig. l(b),

i.e.,

z=a+rcos~+jrsin~ (3)

in (2), giving the following locus in polar coordinates:

Iw,l=
{

tanhz u + tanz o
/

tanhz u’ + tanz u

1 + tanh2 u tan2v 1+ tanh2 u’ tan20 1 (4)

{

tanv 1 – tanh2 u
argwl = tan–l

l+tan20” tafiu }

{

tan v 1 – tanh2 u’
–tan-l

)
(5)

1 + tan2 o tanh u’

where

U=rcos+

v=rsin+

u’= (2a+ r)cos~. (6)
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Fig. 1. (a) Cross section through coupled cylindrical bars. (b) Even-
and odd-mode problems.

Fig. 2. First transformation, D/b= 0.5, s/b= 0.25.

A second conformal transformation

t=–lnw (7)

is now applied to the upper-half w-plane giving the almost

regular boundaries (at least for the odd mode) of Fig. 3.

For convenience the t-plane has been rotated through 90°.

The equation of the smooth curve GF is

tl =argwl +jlnlwll (8)

with IWI \ and arg WI being given by (4)–(6). Since (by

symmetry) tangents to the curve GF at G and F form a

right angle to GC and FA, respectively, and the GF

boundary varies smoothly and gradually, the field is

highly regular, and the odd-mode capacitance can be

written down approximately but very accurately in terms

of the line integral of the flux along the boundary A C. Let

a potential of 1 V be applied to GF with the base conduc-

tor AC at zero potential. Hence at any point on AC
corresponding to a vertical ordinate of GF equal to h, the

gradient of the potential on A C directed normally to this

boundary is simply

V+= l/h. (9)

Hence the capacitance between GF and A C, equal to half
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Fig, 3. Second transformation, t= – lnw.

of the required odd-mode capacitance Cm, is given by

where dg is a line increment parallel to the boundary A C,

e is the free space permittivity, so that Cm/e is given in its

conventional normalized form. In the case of D/b= 0.5

ands/ b =0.25 shown drawn to scale in the figures, equa-

tion (10) results in COO/e= 8.77. A precise finite difference

calculation with the usual relaxation procedure using a

stationary integral expression for the capacitance yields a

value of 8,801 t ,002, i.e., the error in using (10) is less

than 0,4 percent,

At this stage several points may be noted. Firstly the

precise value quoted above was obtained using a quite

coarse grid with only about 100 meshes (the accuracy was

confirmed both by varying the mesh size and by forming

both upper and lower bounds). Secondly the simple ex-

pression (10) results always in a lower bound to the exact

solution, since in practice the electric charge will tend to

concentrate near points G, C in Fig, 3, giving a higher

capacitance. Thirdly, the approximate value may be

sufficiently exact in practice, a point to be discussed

further below. Occasionally for some problems an ap-

proximate closed form solution may be obtained.

Of course not all problems will be amenable tp final

boundaries shaped as advantageously as shown in Fig. 3,

but the general technique should enable the conformal

transformation approach to be applied more freely than

hitherto. Some extra mathematical effort is required both

to find and then apply the appropriate transformations,

this in comparison to plunging directly into a numerical

solution.

Returning to the coupled-bar problem, the even mode

capacitance, corresponding to the magnetic-wall BC of

Fig. 3, has yet to be found. Rather than carrying out a

finite difference calculation for the even mode, it is sim-

pler to make yet another conformal transformation to the

t’ plane of Fig. 4, where

h,
t’=

(

cosh(mf/ hl) – sinh2(d/2h1)
—cosh-l

)
(11)

w cosh2(wt?/2hl)

where h, is an arbitrary point on GF, and is chosen here

as shown in Fig. 3. Equation (11) is derived by mapping

the positive-half straight lines h = O and h = h, together

with the line connecting (O,hl) and (O,O), onto the upper

half plane using the appropriate Schwartz–Chnstoffel

transformation, i.e., the right angles at (O,O) and (O,h,) are
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Fig. 4. t’-plane for calculation of even-mode capacitance.
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Fig. 5. Even- and odd-mode boundaries superimpose~ to scale,

“unfolded”. This figure is then refolded into the original

shape by applying the reverse transformation, but with

one of the right angles now corresponding to point B,
becoming B‘ in Fig. 4. Now the t’-plane problem is

identical to the ~-plane odd-mode problem, and is solved

in the same way as described above. The result for the

even mode capacitance for our D/b = 0.5,s/b = 0.25 case

is CJe = 5.79 by the simple flux integral method of (10),

or 5.812 t 0.002 by the finite difference method. The mu-

tual capacitance Cm of Fig. l(a) is given by

cm cm– cm 1.49 (approximate method)
—.

e 2e = 1.4945 t 0.002 (precise method)”

(12)

It is instructive to superimpose the odd and even mode

boundaries of Figs. 3 and 4 on the same diagram with the

FA, F’A’ magnetic walls coinciding as shown in Fig. 5.

This illustrates the obvious fact that the even and odd

mode fields tend to coincide in regions far removed from

the coupling region. The difference capacitance (mutual

coupling) is clearly defined, and the problem retains its

physicaJ significance throughout.

Although (by symmetry) A ‘F’ is normal to both F’G’
and A ‘B’, F’ is not exactly vertically above A‘, i.e., the
magnetic boundary A ‘F’ possesses slight curvature. In

general the distance A ‘B’ (which maybe defined as the

even mode base) is less than the horizontrd F’ coordinate.

For the example illustrated the difference is 2x 10-5,

which is quite negligible. The effect becomes more pro-

nounced as the bar diameter is reduced, as expected from

physical considerations, but need not be taken into
account until D/b <0.25. For example if D/b= 0.2, s/b
= 0.1, the even mode base is 1.3398, but the F’ coordinate

is 1.3549, a 1-percent difference. The effect is less pro-

nounced for looser coupling, i.e., if D/b= 0.2, s/b= 1.0,

the even mode base is 2.9881 and the F’ coordinate is

2.9909, a O.l-percent difference.
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The greatest error in using the approximate integral (10)

rather than a precise numerical procedure occurs for very

tightly coupled bars, e.g., whens/ b = 0.1 corresponding to

mutual capacitance values in the 3–4 range, but the errors

are usually less than 2 percent. Accuracy of this order is

sufficiently good for filter designs (where the majority of

applications occur), and avoiding more precise methods

results in smaller and faster computer programs.

The application of these results to the solution of the

problem of multiple-coupled bars is given in Appendix 11.

IV. FURTHER DISCUSSION OF ACCWCY

The usual way of testing the accuracy of a new

boundary-value technique is to apply it to problems

having exact solutions obtained by other methods. This is

not possible here because all such problems automatically

give a precisely correct result, since an exact conformal

transformation will exist. Hence it is necessary to test it

against previously published results for “real” problems.

The coupled-rod problem may be checked roughly against

Cristal’s results [9], (see Appendix II), but more precisely

against those of Chisholm [11] for the odd-mode case, and

Wheeler [10] for the case of a single uncoupled bar.

The latter problem may be derived from Fig. 1 by

allowing a+ w, and this limiting case is easily incorpo-

rated into the general coupled-bar program. Changing the

origin of Fig. 1(b) to the bar center by replacing z by z + a

and allowing a-+ ce, (2) reduces to

w=tanhz. (13)

However, as stated above, it is unnecessary to program

this limiting case separately. Wheeler [10] treats two cases

very precisely, namely those for impedances of 50 Q and

19.318 Q, corresponding to D/b= 0.548959 and D/b=
0.866025. Wheeler takes the value of free space impedance

as 120T, and later corrects for the actual velocity of light

and dielectric constant of air, but these considerations are

immaterial here. The normalized capacitances for the

above cases become 7.53982 A 0.00045 and 19.5150A 0.04,

with the tolerances being those quoted by Wheeler.1 The

low impedance case is a very severe test of any theory,

and the estimated accuracy is therefore worse, but still
within 0.2 percent. The very good quoted accuracies are

due to the use of a more sophisticated conformal transfor-

mation than that given by (13), one which gives an even

more regular field, from which a power series expansion

for the characteristic impedance was determined [10]. The

simpler method used here would be expected to give

slightly less accurate results.

The conformal transformation (13) gives an almost-

regular problem similar to that of Fig. 3. The 50-0 prob-

lem gives minimum and maximum ordinates of 0.776495

and 0.900705. Actually only one-quarter of the capaci-

tance need be calculated in the isolated bar case, i.e., the

base is 0.57 rather than ~. The mesh pattern is defined as

(no. of base grids) x (no. of grids in minimum ordinate).

%he accuraciesin this early paper [10] may be overstated.

With a mesh of 10x 5, C/E =7.5381, and with one of

20X 10, C/E = 7.5367. These values are within 0.04 percent

of Wheeler’s figure of 7.5398. The simple line integral of

(10) gives C/e = 7.49, low by 0.66 percent.

In the finite difference method the capacitance is

calculated using the stationary integral technique de-

scribed in many previous papers [1], i.e.,

(14)

where the double integral is taken over the entire area A.

This is not only more accurate than the line integral (10)

but also converges must faster in the relaxation process.

Thus the 10x 5 mesh above converged to 5 decimal place

accuracy in 16 iterations. The line integral converges to

almost the same result in about 60 iterations (without

using an acceleration factor).

In the low impedance case above with D/b= 0.86605,
the minimum ordinate is 0.212018 and the maximum is

0.524869. The simple line integral (10) gives C/e = 19.24,

the finite difference method with a mesh of 16X 2 gives

19.444, 20x 3 gives 19.471, 25X 8 gives 19.487, and 30 X 10

gives 19.491. The finite difference value converges to

approximately 19.493, which is 0.1 percent lower than

Wheeler’s figure of 19.515 t .04, but within his quoted

margin of error.

The mesh sizes used to obtain these results are very

coarse by previous standards, where meshes of the order

100 X 100 have been found necessary to give reasonable

accuracy. The number of nodes is reduced by two orders

of magnitude in the above examples.

Turning now to the coupled bar case of Fig. 1, the odd

mode capacitance problem was solved by Chisholm using

a variational technique [11]. The method was extended to

the even mode case by McDermott [12], and the results

are given in Appendix I. A comparison between a number

of results obtained from these formulas and the method

described in this paper is given in Table I. The first ten

results are for cases where odd mode impedance is 50 Q,

and the even mode impedance varies. The next eight are

for D/b =0.4 with varying s/b. The maximum difference

between the results occurs for D/b =0.4, s/b =0.08, i.e., a

case where the coupling is extremely tight. For most cases

the agreement is within 0.2 percent.

The results in the right hand columns were obtained

using square meshes with dimensions of the order of
0.2 X0.2. Rather than using the finite difference method

with relaxation, a resistive analogue method with exact

matrix inversion (i.e., no relaxation) was used. This is

slightly less accurate than the normal finite difference

method, but the discrepancy is usually in the third deci-

mal place. This technique is beyond the scope of this

paper, and will be described in a future publication [16].

V. APPLICATION TO OTHER PROBLEMS

Over the course of several years the method has been

applied to other problems involving coupled bars, includ-

ing for example coupling via thick symmetric or asymmet-

ric irises. Three of these problems are illustrated in Fig. 6.
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Fig. 6. Illustrating other problems solvable by the combined conformal
transformation/numerical method.

TABLE I
COMPARISONBETWEENNo~ D CMACllXhlCES Cle

OBTAINED FROM mm CHtSHOIM/MCDERMOTT MKTHOD N mm
PAFER

.

D/b S/b
CHISHOLM /Mc DE RMOTT THIS WORK

Even Odd Even Odd

.354 .176 3.9142 7.5347 3.9153 7.5528

.400 .226 4.5093 7.5347 4.5080 7.5404

.436 ,280 5.0281 7.5347 5.032 7.5501

.462 .338 5.4731 7.5347 5.4718 7.5371

.482 .398 5.8497 7.5347 5.8446 7.5339

.498 .462 6.1648 7.5347 6.1721 7,5436

.510 .528 6.4257 7.5347 6.4380 7.5514

.518 .596 6.6404 7.5347 6.6424 7.5371

I .534 I .806 I 7.0727 I 7.5347 [ 7.0710 I 7.5359 \

.544 1.168 7.3855 7.5347 7.3806 7.5285

.400 .080 4.1646 11.0783 4.1553 11.2882

] .400 I .120 4.2631 9.4595 4.2626 9.5317
1

.400 ,160 4.3578 8.4935 4.3516 8.5419

.400 .200 4.4483 7.8478 4.4444 7.8652

.400 .240 4.5340 7.3863 4.5358 7.3982

.400 .400 4.8273 6.3903 4.8263 6.3914

I .400 .600 5.0826 5.8862 5.0819 5.8848

.400 .760 5.2134 5.6949 5.2130 5.6946 I
I I I I 1 1 1
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In each case the thick iris retains most of its main geomet-

ric features through the conformal transformations, and

finally one of the thick-iris formulas to be found in the

literature may be applied, or further conformal transfor-

mations used to eliminate the right angles of the iris. The

configuration shown in Fig. 6(c) is frequently used to

realize cross-coupling in linear phase filters.

It will be noted that treatment of these problems involv-

ing thick irises would be very difficult using a purely

numerical method, since a very fine mesh would be re-

quired in the region of the irises. The thin symmetrical iris

case has been solved by Cristal [13] using the finite

difference method. If exact solutions to such problems

exist, they require at least third ordered elliptic functions,

since there are usually several right-angle discontinuities.

In the method of this paper the problem is taken in stages,

with some right angles unfolded in an initial transforma-

tion and the remainder in a final transformation. The final

boundaries are irregular but smooth, and the functions are

elementary.

Configurations with mixed dielectrics are easily handled

by keeping track of the locus of the dielectric boundary

(e.g., [7], [8]).

VI. CONCLUSIONS

Boundary value problems may be simplified and made

well-conditioned using conformal transformations to give

almost regular field patterns. The numerical work is sim-

plified, i.e., the number of nodes may be 100 times less

than that required for a conventional numerical solution,

while the accuracy is extremely good. Some problems

which are beyond the limits of either purely numerical

techniques or pure conformal transformations become

tractable using the combined technique, The method is

much faster than the numerical technique alone, and may

be used in an iteration procedure which determines di-

mension5 from given capacitances, i.e., it is useful in

synthesis as well as analysis.

The method may be used to treat complicated

boundaries having several right angles without recourse to

higher order functions, and to mixed dielectric problems.

APPENDIX I

COUPLED-BAR EQUATIONS OFCHISHOLM[11] AND

MCDERMOTT [12]

The results given here are expressed in terms of
Chisholm’s nomenclature, which is shown in Fig. 7. The

results are given in a power series in b/a as far as (b/a)4.
The even or odd mode normalized capacitance C/e is

given by

: =[x”,”+2a,x”,’+ 2a2x”,’+2a,a2xl,’

+ a:xl’’+a;x*”] (15)

where

al=—

a~=—

-xl,o~l,’

/

X1.1 X1,2

X*,O X2,2 X2,1 X2,2
(16)

~l,lxl,o

/

X1,1 X1,2

~2,1 X’,o X2,1 X2,2 “
(17)

I

a

I
v

l-c-p--c+

Fig. 7. Chisholm’s nomenclature for coupled bars.

The X~’k differ for the two modes, are given as follows,

with the upper sign giving the odd-mode capacitance and

the lower sign the even-mode capacitance:

[
XO’O= -& ln~ flntanh~

1
(18)

x,o=x”l=~~[cosech~]o(~) (19)

[

2TC
Xl>l=+–: &coth- cosech~ c ~ 2 (20)

a ]()

[

27TCxO,Z=XZI’= ; { Tcoth— cosech~].~~)’ (21)
a a a

[
XL2=X*~l= T ~ tanh~sech’~

b3

10+coth~ cosech’ ~ . ;

r’ 14x2,2_ 1

[(

_ + Cosech’ ~

167T 256 15 – a )

“(
2 coth2 ~ + cosech’~

)

(22)

( ]():4. (23)~ sech’ ~ 2 tafi2 ? – sech’ ~ . —
a a a

Upper sign for odd mode, lower sign for even mode,

APPENDIX 11

MULTIPLE-COUPLED BAR ARRAYS

The general case of multiple-coupled bars may be

treated by a similar put possibly rather more convenient

method than that of Cristal [9], in the sense that graphical

interpolation will be avoided. The method to be described

here parallels that for rectangular coupled bars [4], to the

extent that the equivalents of parallel-plate and fringing

capacitances will be defined for circular bars. Fig. 8(a)

shows an isolated uncoupled bar having equivalent paral-
lel plate capacitance Cg and fringing capacitances Cf, so

that the total capacitance in this case is

Cg+cf=cl (24)

when two such bars are coupled the odd- and even-mode

circuits of Fig. 8(b) and (c), respectively, result, where

cg+cf+2cm=cm

Cg+ c,= co=.

(25)

(26)
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Fig. 8. Definition of “equivalent-paratlel plate” and “fringing” capaci-
tances for cylindrical bars.

It is not necessary to define distinct even and odd mode

fringing capacitances in the circular bar case, these being

incorporated into the single mutual capacitance Cw. The

three equations (24)–(26) may be solved to give

cm= ;(cm– C@) (27)

Cf= C*– cm (28)

cg=2cm–cl. (29)

Hence the definition of the equivalent parallel plate and

fringing capacitances requires a solution for the isolated

bar capacitance CI, as described in the main text.

Comparison with Cristal’s results [9] may be obtained

by forming the symmetrical odd and even mode circuits

of Fig. 9, which indicates that Cg and Cm are identical to

the quantities defined and plotted in [9]. In our D/b= 0.5,

s/b =0.25 example, CI = 6.75, COO=8.77, Ca = 5.79, giving

Cg = 4.83, Cm= 1.49, Cf = 0.96.

In the case of an array of unequal bars where the self

and mutual capacitances are given, the dimensions are

found as follows. Assuming that the end bar is decoupled
from an end wall, its self capacitance is Cg + CJ= C@.

Choosing any value of D/b, there is one and only one

value of s/b giving the required mutual capacitance, and

this is found by iteration. The chosen D/b is correct only

if it gives the correct self-capacitance, and an overall

iteration must be carried out to find this correct value of

D/b. Hence there is one iteration loop nested inside

another, but forming appropriate slopes the Newton–

Raphson technique will converge very rapidly.

In the case of an inner bar, the left and right hand

values are dealt with separately as described in [9]. The

known self capacitance here is simply Cg, and again the
unique D/b ands/ b values are found. Then the mean of

the left and right D/b values is chosen as the actual D/b
for that bar. The s/b values are formed similarly as

arithmetic means.

The iteration process is sufficiently fast for the method

to be used in a routine program for calculation of the

dimensions of a large array, i.e., no prestored results are

J5El_
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Fig. 9. (a) Symmetrieaf odd-mode configuration.(b) Symmetrical even-
mode eonfiguration.

used. By carrying out simple capacitance matrix transfor-

mations [15] equivalent arrays with equal bar diameters

are derived using no more than three overall iterations.

The results obtained from this procedure are almost

identical to those given in [9] for values of D/b> 0,2, a

condition which should hold in almost all practical cases.

Smaller values of D/b imply the possibility of coupling

between nonadjacent bars, and structures of such high

impedance would normally be avoided.
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